ultrafilter topology - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

ultrafilter topology - translation to ρωσικά

IN SET THEORY, GIVEN A COLLECTION OF DENSE OPEN SUBSETS OF A POSET, A FILTER THAT MEETS ALL SETS IN THAT COLLECTION
Generic ultrafilter

ultrafilter topology      

математика

топология ультрафильтра

indiscrete topology         
TOPOLOGY WHERE THE ONLY OPEN SETS ARE THE EMPTY SET AND THE ENTIRE SPACE
Indiscrete topology; Indiscrete space; Codiscrete topology

математика

антидискретная топология

principal ultrafilter         
MAXIMAL PROPER FILTER
Ultrafilter lemma; Ultrafilter Lemma; Ultrafilter principle; Rudin-Keisler ordering; Rudin–Keisler ordering; Rudin–Keisler order; Rudin-Keisler order; Principal ultrafilter; Ramsey ultrafilter; Selective ultrafilter; Rudin–Keisler equivalent; Rudin-Keisler equivalent; The ultrafilter lemma; Ultra prefilter; Free ultrafilter (set theory); Ultrafilter monad

математика

главный ультрафильтр

Ορισμός

topology
1. <mathematics> The branch of mathematics dealing with continuous transformations. 2. <networking> Which hosts are directly connected to which other hosts in a network. Network layer processes need to consider the current network topology to be able to route packets to their final destination reliably and efficiently. (2001-03-29)

Βικιπαίδεια

Generic filter

In the mathematical field of set theory, a generic filter is a kind of object used in the theory of forcing, a technique used for many purposes, but especially to establish the independence of certain propositions from certain formal theories, such as ZFC. For example, Paul Cohen used forcing to establish that ZFC, if consistent, cannot prove the continuum hypothesis, which states that there are exactly aleph-one real numbers. In the contemporary re-interpretation of Cohen's proof, it proceeds by constructing a generic filter that codes more than 1 {\displaystyle \aleph _{1}} reals, without changing the value of 1 {\displaystyle \aleph _{1}} .

Formally, let P be a partially ordered set, and let F be a filter on P; that is, F is a subset of P such that:

  1. F is nonempty
  2. If pq ∈ P and p ≤ q and p is an element of F, then q is an element of F (F is closed upward)
  3. If p and q are elements of F, then there is an element r of F such that r ≤ p and r ≤ q (F is downward directed)

Now if D is a collection of dense open subsets of P, in the topology whose basic open sets are all sets of the form {q | q ≤ p} for particular p in P, then F is said to be D-generic if F meets all sets in D; that is,

F E , {\displaystyle F\cap E\neq \varnothing ,\,} for all E ∈ D.

Similarly, if M is a transitive model of ZFC (or some sufficient fragment thereof), with P an element of M, then F is said to be M-generic, or sometimes generic over M, if F meets all dense open subsets of P that are elements of M.

Μετάφραση του &#39ultrafilter topology&#39 σε Ρωσικά